Graphing, Continuity, and Limits for Rational Functions

Sketch the function $f(x)=\frac{2 x^{2}-5 x-12}{x^{2}-6 x+8}$ and complete the following:
$f(x)$ has a 1) vertical asymptote at $\mathrm{x}=$ \qquad

2) horizontal asymptote of $y=$ \qquad
3) x - intercept of \qquad
4) y - intercept of \qquad
5) removable discontinuity at $x=$ \qquad
and a 6) non-removable discontinuity at $x=$ \qquad
Evaluate the following:
7) $f(-3 / 2)$
8) $f(0)=$ \qquad 9) $f(2)=$
10) $f(4)=$ \qquad

Evaluate the following limits or state "does not exist"
11) $\lim _{x \rightarrow-3 / 2} f(x)=$
16) $\lim _{x \rightarrow / 2} f(x)=$ \qquad
12) $\lim _{x \rightarrow 0} f(x)=$ \qquad 17) $\lim _{x \rightarrow 4^{-}} f(x)=$ \qquad
13) $\lim _{x \rightarrow 2^{-}} f(x)=$ \qquad 18) $\lim _{x \rightarrow 4^{+}} f(x)=$ \qquad
14) $\lim _{x \rightarrow 2^{+}} f(x)=$ \qquad 19) $\lim _{x \rightarrow 4} f(x)=$ \qquad
15) $\lim _{x \rightarrow 2} f(x)=$ \qquad 20) $\lim _{x \rightarrow+\infty} f(x)=$ \qquad (Form B)

Answer Key Graphing, Continuity, and Límits for Rational Functions

Sketch the function $f(x)=\frac{2 x^{2}-5 x-12}{x^{2}-6 x+8}$ and complete the following:
$f(x)=\frac{2 x^{2}-5 x-12}{x^{2}-6 x+8}=\frac{(2 x+3)(x-4)}{(x-4)(x-2)}=\frac{(2 x+3)}{(x-2)}$, for $x \neq 4$
$f(x)$ has a 1) vertical asymptote at $\mathrm{x}=\underline{2}$
2) horizontal asymptote of $y=\underline{2}$
3) x - intercept of $-3 / 2$
4) y - intercept of $-3 / 2$

5) removable discontinuity at $x=\underline{4}$
and a 6) non-removable discontinuity at $x=\underline{2}$
Evaluate the following:
7) $f(-3 / 2)-0$
8) $f(0)=\underline{-3 / 2}$
9) $f(2)=\underline{\text { Undef. 10) }} f(4)=\underline{\text { Undef. }}$

Evaluate the following limits or state "does not exist"
11) $\lim _{x \rightarrow-3 / 2} f(x)=0$
12) $\lim _{x \rightarrow 0} f(x)=-3 / 2$
13) $\lim _{x \rightarrow 2^{-}} f(x)=-\infty$
14) $\lim _{x \rightarrow 2^{+}} f(x)=+\infty$
15) $\lim _{x \rightarrow 2} f(x)=$ D.N.E.
20) $\lim _{x \rightarrow+\infty} f(x)=\underline{2}$
(Form B)

